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Abstract

This paper extends a class of approximate Riemann solvers devised by Harten, Lax
and van Leer (HLL) for Euler equations of hydrodynamics to magneto-hydrodynamics
(MHD) equations. In particular, we extend the two-state HLLC (HLL for contact
wave) construction of Toro, Spruce and Speares to MHD equations. We derive a
set of HLLC middle states that satisfies the conservation laws. Numerical examples
are given to demonstrate that the new MHD-HLLC solver can achieve high numer-
ical resolution, especially for resolving contact discontinuity. In addition, this new
solver maintains a high computational efficiency when compared to Roe’s approxi-
mate Riemann solver.
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1 Introduction

Many astrophysics problems demand solutions of magneto-hydrodynamics (MHD) equations.
There are many numerical techniques to solve MHD equations. In this paper, we consider a
Godunov type of method. Godunov’s method and its various derivatives have gained increas-
ing popularity in solving the Euler equations of hydrodynamics (HD) due to their robustness
and ability to achieve high resolution near discontinuities. Central to these methods is the
exact or approximate solutions of the Riemann problem. In the last decade, several Godunov
methods for HD have been extended to MHD systems. These methods conservatively update
the zone-averaged or grid-centered fluid and magnetic field quantities based on estimated
advective fluxes of mass, momentum, energy and magnetic field at grid interfaces using so-
lutions to the Riemann problem at interfaces. Some of the MHD examples have been given
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by Brio and Wu [5], Zachary et al. [26]. Dai and Woodward [7,8], Powell [17], Ryu and Jones
[21], Roe and Balsara [20], and Balsara [2], among others.

The exact Riemann solver is generally considered too expensive for most Godunov type meth-
ods. As a result, several approximate Riemann solvers have been developed. One of the most
widely used solvers is the Roe’s approximate Riemann solver [19], which has been applied
to MHD by many authors (see [5,17,21,20,2,18]). Roe’s solver requires eigen-decomposition,
which becomes more complicated and time-consuming in MHD than in HD [20]. Moreover,
Roe’s approximate Riemann solver does not preserve the positivity [10]. This problem be-
comes worse in MHD when gas pressure is much less than magnetic pressure.

The approximate Riemann solver devised by Harten, Lax, and van Leer [12] (HLL) has a
nice property that it is a positive scheme if used with an appropriate choice of wavespeed
bounds for any conservative hyperbolic system. The HLL Riemann solver does not require
field-decomposition. The simple single state HLL solver assumes only one intermediate wave
state between the two acoustic waves and has been shown to be reliable and robust in most
applications. A typical example of the single state HLL solver is HLLE scheme by Einfeldt
et al. [10], who proposed a particular wavespeed bound which enables the intermediate state
to satisfy the so-called entropy and positivity conditions.

The single-state HLL and HLLE solvers, however, are too diffusive and cannot resolve iso-
lated contact discontinuities very well. In the original work by Harten et al. [12], they have
already realized this problem and suggested that a two-state approximation could yield an
exact resolution of an isolated intermediate wave (e.g., a shock, contact, or Alfvén wave, etc).
They further proposed a general framework to construct such types of solvers. The full imple-
mentation of this approach, however, was never given, perhaps partly owing to the fact that
the two-state HLL algorithm described in [12] is non-intuitive, cumbersome and somewhat
ambiguous because it contains arbitrary constants [15]. Another approach to improve the
single-state HLL scheme was introduced in Ref. [10], called HLLEM. This approach used a
partial eigen-decomposition and added anti-diffusion terms only to the linearly-degenerated
fields.

A different but much simpler approach in constructing the two-state HLL-type solvers came
from Toro et al. [24], who assumed that the intermediate left and right states have the same
velocity and pressure. These assumption are physically valid for the contact wave, which is
why this solver is called HLLC (“C” stands for Contact). Batten et al. [4] retained the basic
assumptions of Toro et al. but suggested a different way for computing the wavespeed of
the intermediate states. They showed that their HLLC solver can resolve isolated shock and
contact waves exactly and remain positively conservative for HD equations with a proper
choice of the wavespeed bounds.

Recently, Linde [15] proposed a new, general purpose, two-state HLL solver by following the
original two-state framework by Harten et al. [12], though his method is substantially simpler.
The two-state HLL solver is based on a convex entropy function, its gradients and Hessian
matrix to identify the velocity and strength of the middle wave. Linde used a geometric
interpretation of the Rankine-Hugoniot conditions to estimate the speed and strength of the
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middle wave, therefore eliminating the arbitrary constants of the original HLL framework.

Many of the HLL-type solvers discussed above have been applied to MHD problems with
varying degree of success. Examples include Janhunen [13], Wesenberg [25], Linde [15], Gurski
[11], and others. Motivated by the work of Powell [17], Janhunen [13] developed a new MHD-
HLL scheme while adding a source term proportional to ∇·B in the induction equation. He
then showed by extensive tests that no counterexamples have been found to the positivity of
this MHD-HLL method. Wesenberg [25] extended HLLEM to MHD by adding anti-diffusion
terms to all the waves except the two fast magneto-sonic waves. He then demonstrated
numerically that for both smooth and non-smooth problems in 1D and 2D, MHD-HLLEM
was the most efficient solver in terms of computational time versus error. Since MHD flows
contain as many as seven (or eight) eigen-waves, however, the computational saving by
HLLEM over the Roe’s solver may not be as great as that in the pure HD flows. The solver
developed by Linde [15] is directly applicable to MHD problems and has been shown to be
better than the HLLE solver. Some recent studies aimed at applying HLLC to MHD problems
(e.g., Gurski [11]). However, we found that a straightforward implementation of Toro and
Batten’s HLLC solver for MHD equations failed and/or yielded unphysical solutions which
violate conservation laws.

In this paper, we propose a new MHD-HLLC solver which is the same as Toro and Batten’s
HLLC solver in the pure HD limit but satisfies the conservation laws in MHD. The outline of
the paper is as follows. In Section 2, we review the HLL and HLLC solvers for HD equations.
In Section 3, we derive the new MHD-HLLC solver for MHD, first for 1-D and then for
multi-dimensional problems. Several examples are given in Section 4, demonstrating the
effectiveness of our scheme.

2 HLL and HLLC Riemann solver for HD

For the sake of completeness and ease of subsequent discussion on how to build a new MHD-
HLLC solver, we will first give a brief overview on the construction of HLL and HLLC solvers
for pure HD.

2.1 The HLL flux

The Euler equations may be written as

∂U

∂t
+∇ · F (U) = 0, (1)
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where U and F (U) represent the conservative variables and their fluxes,

U =







ρ
ρu
E





 , F (U) =







ρu
ρuuT + pI
(E + p)u





 ,

where ρ,u = (u, v, w), E and p represent density, Cartesian velocity components, total energy
per unit volume, and pressure, respectively.

Consider the Riemann problem along the x-direction, it has the following piece-wise constant
initial data for the left and right states

U(x, 0) =
{

Ul, if x < 0,
Ur, if x > 0.

A simple conservative discretization for Eq. (1) gives

Un+1
i = Un

i −
∆t

∆x
(Fi+ 1

2

− Fi− 1

2

).

In the HLL approach, to calculate the fluxes Fi+ 1

2

, Harten, Lax and van Leer [12] proposed
a single state approximate Riemann solution as

UHLL =







Ul, if SL > 0,
U∗, if SL ≤ 0 ≤ SR,
Ur, if SR < 0.

where SL and SR represent the fastest wave speed for the left and right states, respectively.
The variable U∗ denotes the intermediate subsonic state and is defined as

U∗ =
SRUr − SLUl − (Fr − Fl)

SR − SL

, (2)

where Fl = F (Ul) and Fr = F (Ur). The corresponding interface flux is defined as

FHLL =







Fl, if SL > 0,
Flr, if SL ≤ 0 ≤ SR,
Fr, if SR < 0

where Flr is given as

Flr =
SRFl − SLFr + SLSR(Ur −Ul)

SR − SL

.

Note that FHLL 6= F (UHLL) for the subsonic case SL ≤ 0 ≤ SR.

There are several methods to evaluate the wavespeed bounds SL and SR [23] and in this
paper, we adopt the one proposed in [10] because they have shown, with their choices of
SL and SR, the HLL Riemann solver satisfies an entropy inequality, resolves isolated shocks
exactly and preserves positivity [10].
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2.2 HLLC flux

The HLLC flux is a modification of FHLL. Instead of a single intermediate state U∗, two
intermediate states, U∗

l and U∗
r, are assumed, separated by an interface moving with speed

SM . To calculate U∗
l and U∗

r, we recap the approach taken by Batten et al. by applying the
Rankine-Hugoniot conditions across the SL wave

F ∗
l = Fl + SL(U

∗
l −Ul). (3)

Similarly, the jump relation across the SR wave gives,

F ∗
r = Fr + SR(U

∗
r −Ur). (4)

Equation (3) may be rewritten as

SLU
∗
l − F ∗

l = SLUl − Fl. (5)

Following Batten et al. and assuming F ∗
l = F (U ∗

l ), we can write out Eq. (5) along the
direction ~n = (nx, ny, nz) which is normal to the interface separating states Ul and U ∗

l ,

SL















ρ∗l
ρ∗l u

∗
l

ρ∗l v
∗
l

ρ∗lw
∗
l

E∗
l















−















ρ∗l q
∗
l

ρ∗l u
∗
l q

∗
l + p∗nx

ρ∗l v
∗
l q

∗
l + p∗ny

ρ∗lw
∗
l q

∗
l + p∗nz

(E∗
l + p∗)q∗l















= SL















ρl
ρlul
ρlvl
ρlwl

El















−















ρlql
ρlulql + pnx

ρlvlql + pny

ρlwlql + pnz

(El + p)ql















(6)

where ql = ulnx+ vlny +wlnz is the velocity component of the state Ul along ~n. q∗l is defined
similarly.

Toro, Spruce, and Speares [24] made the further assumption that the wavespeed is constant
between the two acoustic waves,

SM = q∗l = q∗r = q∗.

Eq. (6) shows that the U∗
l,r can be solved uniquely if q∗ and Ul,r are known.

There are several approaches to estimate the middle wave speed q∗ (see Ref. [24]). We used
an approach proposed by Batten et al. [4]. This approach is to extract the average velocity
q∗ from the HLL approximation of U∗. Taking the Riemann problem in x-direction as an
example, ~n = (1, 0, 0), q = u, we have

q∗ =
ρrqr(SR − qr)− ρlql(SL − ql) + pl − pr

ρr(SR − qr)− ρr(SL − ql)
. (7)
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3 HLLC for MHD

3.1 Eigen structure for MHD

The ideal MHD equations can be formulated as

ρt +∇ · (ρu)= 0, (8)

(ρu)t +∇ ·
[

ρuuT + (p)I−BBT
]

=0, (9)

Et +∇ · [(E + p)u−B(u ·B)] = 0, (10)

Bt −∇ · (uBT −BuT )= 0, (11)

where ρ is density, u is the velocity, B is the magnetic field, E is the total energy per unit
volume, and p is the total pressure, defined as

p = pgas +
1

2
B ·B, (12)

where pgas is the gas pressure that satisfies the equation of state,

pgas = (γ − 1)
(

E − 1

2
ρu · u− 1

2
B ·B

)

.

One external constraint for magnetic field is the divergence-free condition ∇ ·B = 0, which
becomes Bx = constant in one dimension.

Figure 3.1 shows the {x− t} diagram of all the waves at a cell interface for MHD. They are:
one entropy waves with speed u, two Alfvén waves with speed u ± ca, where ca = Bx/

√
ρ,

and four magneto-acoustic waves (two fast and two slow) with speed, u ± cf and u ± cs,
where

c2
f,s =

1

2







γp+ B ·B
ρ

±

√

√

√

√

(

γp+ B ·B
ρ

)2

− 4
γpB2

x

ρ2





 ,

and “+” for fast and “-” for slow waves.

3.2 HLLC for 1-D MHD

For simplicity, we consider the ideal MHD equations in Cartesian grids only. It can be readily
applied to other orthogonal curvilinear grids. We first show that a straightforward extension
of HLLC scheme of [24] to the MHD equations does not work. Then we propose our modified
MHD-HLLC scheme.
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Fig. 3.1. Waves in 1-D MHD Riemann problem.

Consider the 1-D MHD equations, where Bx is constant. Re-write Eq. (6) for MHD, we get
(subscript l is dropped for simplicity)

SL































ρ∗

ρ∗u∗

ρ∗v∗

ρ∗w∗

B∗
x

B∗
y

B∗
z

E∗































−































ρ∗q∗

ρ∗u∗q∗ + p∗ − (B∗
x)

2

ρ∗v∗q∗ −B∗
xB

∗
y

ρ∗w∗q∗ −B∗
xB

∗
z

0
u∗B∗

y − v∗B∗
x

u∗B∗
z − w∗B∗

x

(E∗ + p∗)q∗ −B∗
x(B · u)∗































= SL































ρ
ρu
ρv
ρw
Bx

By

Bz

E































−































ρq
ρuq + p− (Bx)

2

ρvq −BxBy

ρwq −BxBz

0
uBy − vBx

uBz − wBx

(E + p)q −Bx(B · u)































,(13)

where p (or p∗) represents the total pressure, defined by (12), and u∗ = q∗, u = q.

Similar to Eq. (7), the speed q∗ for MHD can be written as

q∗ =
ρrqr(SR − qr)− ρlql(SL − ql) + pl − pr −B2

xl
+B2

xr

ρr(SR − qr)− ρr(SL − ql)
. (14)

Other components of U∗ can now be derived from Eq. (13). After some manipulation, we
obtain

B∗
y =

(SL − u− B∗
xBx

ρ(SL−u)
)By − (B∗

x −Bx)v

SL − q∗ − (B∗
x)2

ρ(SL−u)

, (15)
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B∗
z =

(SL − u− B∗
xBx

ρ(SL−u)
)Bz − (B∗

x −Bx)w

SL − q∗ − (B∗
x)2

ρ(SL−u)

. (16)

and

p∗ = ρ(SL − u)(q∗ − u) + p−B2
x + (B∗

x)
2. (17)

To satisfy the assumption p∗l = p∗r with the definition of q∗, we obtain

B∗
xl
= B∗

xr
. (18)

which is obviously true in 1D. We will re-visit this relation for multi-dimensional problems
in Section 3.3. With the known values of B∗

x, B
∗
y , B

∗
z , q

∗ and p∗, the rest of the components
can be derived easily:

ρ∗l = ρ
SL − u

SL − q∗
, (19)

(ρu)∗l = ρ∗q∗, (20)

(ρv)∗l =(ρv)
SL − u

SL − q∗
− (B∗

xB
∗
y −BxBy)

SL − q∗
, (21)

(ρw)∗=(ρw)
SL − u

SL − q∗
− (B∗

xB
∗
z −BxBz)

SL − q∗
, (22)

E∗
l =E

SL − u

SL − q∗
+

(p∗q∗ − pu)− (B∗
x(B · u)∗ −Bx(B · u))
SL − q∗

. (23)

The right middle state U∗
r can be derived similarly. The two-state HLLC fluxes can be

calculated via Eqs. (3) and (4).

Unfortunately, the HLLC middle state U∗ derived above is not consistent with the integral
form of the conservation laws, which is described as a Consistency Condition by Toro [23]:

q∗ − SL

SR − SL

U∗
l +

SR − q∗

SR − SL

U∗
r =

SRUr − SLUl − (Fr − Fl)

SR − SL

, (24)

even though the pure HD HLLC intermediate states do satisfy this condition. Indeed, when
we tested the solution from Eqs. (15) to (23), we found that they either failed quickly or
gave completely unphysical results.

However, we were able to find a set of solutions which complies with the conservation law
Eq. (24) by the following procedure. We choose to keep Eqs. (14) and (17) unchanged. The
idea is to see whether we can derive new expressions for B∗

y and B∗
z that satisfy Eq. (24).

8



Substituting Eqs. (21) and (22) into Eq. (24), we obtain the following conditions for the
magnetic components

B∗
xl
B∗

yl
=B∗

xr
B∗

yr
, (25)

B∗
xl
B∗

zl
=B∗

xr
B∗

zr
. (26)

Since B∗
xl
= B∗

xr
from condition (18), Eqs. (25) and (26) give

B∗
yl
= B∗

yr
, B∗

zl
= B∗

zr
. (27)

Furthermore, we assign the single HLL average state values to them using Eq. (2),

B∗
yl
= B∗

yr
= BHLL

y , B∗
zl
= B∗

zr
= BHLL

z . (28)

Note that other choices for B∗
y and B∗

z should also work as long as they satisfy Eq. (27).

Having derived the new B∗
y and B∗

z , along with q∗ and p∗, we now proceed to find a new E∗
l,r,

defined in (23), which satisfies Eq. (24). Substituting Eq. (23) into Eq. (24), we get

B∗
xl
(B · u)∗l = B∗

xr
(B · u)∗r, or (B · u)∗l = (B · u)∗r . (29)

As in Eq. (27), we can assign the HLL average values to them,

(B · u)∗l = (B · u)∗r := BHLL · uHLL, (30)

and the middle state Eq. (23) becomes

E∗
l = E

SL − u

SL − q∗
+

(p∗q∗ − pu)− (B∗
x(B

HLL · uHLL)−Bx(B · u))
SL − q∗

. (31)

The quantity uHLL can be calculated from the conservative variables UHLL. We remark that
if we had chosen (B ·u)∗k = B∗

k ·u∗
k, Eq. (29) would not be satisfied by the given expressions

of B∗ and u∗.

With the newly derived U∗
l,r that satisfy Eq. (24), we can now write the MHD-HLLC flux

as, keeping the original format,

FHLLC =



















Fl, if 0 ≤ SL

F ∗
l = Fl + SL(U

∗
l −Ul), if SL ≤ q∗

F ∗
r = Fr + SR(U

∗
r −Ur), if q∗ ≤ SR

Fr, if 0 ≥ SR.

(32)
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3.3 HLLC for multi-dimensional MHD

In keeping with the HLLC assumption that p∗l = p∗r, which results in the condition Eq. (18),
we adopt a convenient extension into multi-dimensional cases by requiring

B∗
xl
= B∗

xr
= BHLL

x =
SRBxr

− SLBxl

SR − SL

. (33)

Then the whole set of expressions for the intermediate states U∗
l,r described in the last section

remains the same.

4 Numerical Experiment

In this section, we provide some examples to test our new MHD-HLLC solver. The dimen-
sional split version of our solvers (see [16]) is used. The CFL number is set as 0.8 and time
step is determined adaptively. To preserve the divergence-free constraint of magnetic fields,
the flux-CT approach on staggered grid [1] is used. Whenever the cell-centered magnetic
field components are needed, interpolations from the face-centered values are used.

4.1 Rotated shock-tube problem

The first test problem was introduced in Ref.[21] as a 1-D MHD Riemann problem. It was
later used by Ref.[22] to compare several numerical schemes for MHD. We adopt the same
initial and boundary conditions as in Ref.[22]. The initial left and right states are

(ρ, v‖, v⊥, vz, p, B‖, B⊥, Bz) =

{

(1.08, 1.2, 0.01, 0.5, 0.95, 2√
4π
, 3.6√

4π
, 2√

2π
), left,

(1, 0, 0, 0, 1, 2√
4π
, 4√

4π
, 2√

2π
), right,

where ‖ refers to the direction along the normal of the shock front, ⊥ refers to the direction
perpendicular to the normal of the shock front but still in the computational plane, and
z refers to the direction out of the plane. It involves three-dimensional field and velocity
structure where the magnetic field plane rotates. Since all of the three magnetic components
are non-zero, it is often referred as a 2.5D problem.

The Riemann solution for this example contains two fast shocks, two rotational disconti-
nuities, two slow shocks, and a contact discontinuity between the two slow shocks. As in
[22], we solved it as an oblique shock-tube problem in 2-D. In [22], the angle between the
shock interface and y-axes is set to 45 degree. To break the symmetry, we solved it with
an angle of α = tan−1 2 ≈ 63.4◦. Initial domain and problem set-up is the same as in [22]
except that the local grid spacing is different. We use 400 cells in x-direction. The number
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of cells in y-direction is equal to the number of ghost cells. In [22], dy = dx was used, which
leads to that the shock interface is not in a straight line and the parallel component of the
magnetic field is not conserved as it should be even if the flux-CT is used. We modify the
local spacing in y-direction so that the shock interface has a straight line. For α = tan−1 2,
we set dy = dx/2. After this modification, the parallel component of the magnetic field is
conserved exactly if the flux-CT is used.

Figs. 4.1 and 4.2 show the results for α = 0 and tan−1 2. For comparison, we also include
the results of two-state HLL solver of Linde [15] for α = 0. We can see that our MHD-HLLC
greatly improves the results over the HLL solver. For this calculation, the HLL and MHD-
HLLC took almost the same CPU time (4.102s vs. 4.215s), whereas the Roe’s solver took
6.175 seconds.

To quantify the numerical error, we calculate an L1 error as follows. First we obtain a
reference solution of 400 cells by averaging the solutions of N = 1600 over each coarse cell.
Then the difference ∆uij between the numerical solution and reference solution is computed.
Finally, the total error is calculated as

Err =
Nu
∑

i=1

N
∑

j=1

|∆uij|
max

j
|ui| , (34)

where ui is only for the cell-centered variables. The errors of the four schemes (Roe’s, MHD-
HLLC, Linde’s two-state HLL, and HLL) for α = 0 are 0.0098, 0.0118, 0.0135, and 0.0148,
respectively.

The next shock-tube problem is originally from Brio and Wu [5], which is a classical test
problem for ideal MHD codes. It is a 1-D shock-tube problem with the initial states

(ρ, v‖, v⊥, p, B⊥, Bz, p) =
{

(1, 0, 0, 0, 1, 0, 1), left,
(0.125, 0, 0, 0,−1, 0, 0.1), right.

and B‖ = 0.75. Again we solved it as a fully 2-D problem with an angle α between the shock
interface and y-axes. The 2D test with α = 45◦ has been solved by Jiang and Wu [14], and
many others. We solved it with α = tan−1 2. The initial domain and grid set-up are the same
as in the first example. The Riemann solution for this example contains two fast shocks and
two rarefaction waves, a slow compound, a contact discontinuity, and a slow shock (see Fig.
4.3 for the numerical results). The errors of the three schemes (Roe’s, MHD-HLLC, and
HLL), calculated via Eq.(34), are 0.0250, 0.0218, and 0.0267 respectively. It is interesting to
see that the MHD-HLLC solver is even more accurate than Roe’s scheme for this problem.

4.2 Two-dimensional propagation of Alfvén wave

This example is taken from Ref.[6]. It is pointed out in Ref. [6] that some schemes that per-
form quite well for hydrodynamical tests may have difficulties with the propagation of Alfvén
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Fig. 4.1. Results for 2.5D shock-tube problem. The angle between the shock interface and y-axes
is 0. Output is at t = 0.2.

waves. The set-up of the problem is as follows. A circular pulse of velocity perpendicular to
the plane of computation is initialized at the center of a 200×200 zone grid which contains
a uniform magnetic field. Throughout the plane, the density, pressure, and adiabatic index
are set to 1, 3/5, and 5/3, respectively. The velocity is set to zero everywhere, except for a
circular region in the center of the grid with a radius of 10 zones in which v3 is set to 10−3. In
Ref.[6], the Alfvén pulse has been either transported in x-direction or in diagonal direction.
We test the problem with a different propagation direction by setting the magnetic field as
Bx = 1, By = 2. This problem has exact solutions for v3. The circular pulse in v3 should be
carried along the magnetic field line at the Alfvén speed intact and undistorted.

We solve this example with three different Riemann solvers. Figs. 4.4-a and 4.4-c show the
results of MHD-HLLC, Roe’s, and HLL Riemann solver. It is clear that HLL Riemann solver
is more diffusive than MHD-HLLC Riemann solver. For this example, HLL took 36 seconds,
MHD-HLLC 38 seconds, and Roe’s solver took 50 seconds.
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Fig. 4.2. Results for 2.5D shock-tube problem. The angle between the shock interface and y-axes
is tan−1 2. Output is at t = 0.2/

√
5.

4.3 Rotor problem

This test problem is taken from Ref.[1]. It was also used by Tóth [22] to compare several
numerical schemes. We use exactly the same set-up of the problem as was described in [22].

We solve the first rotor problem of Ref. [22] to time 0.15. It was reported by Tóth [22] that
many one step TVD base scheme failed to solve this problem due to negative pressure. We
did not encounter any difficulties with all of our solvers and time integration schemes. We
used two-level refinement with refinement ratio of 3. Fig. 4.5 shows the results for Roe’s,
MHD-HLLC and HLL Riemann solvers. HLL solver took 34 seconds, MHD-HLLC solver
took 37 seconds, and Roe’s solver took 52 seconds to reach the final time t = 0.15. It is
clearly seen that the HLL solver was too diffusive.
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Fig. 4.3. Results for Brio and Wu’s shock-tube. The angle between the shock interface and y-axes
is tan−1 2. Output is at t = 0.2/

√
5.

5 Conclusion

We have extended the HLLC Riemann solver for HD equations to MHD equations. The new
MHD-HLLC solver satisfies the integral form of conservation laws, does not require eigen-
decomposition, and can greatly improve the computational efficiency for MHD problems.
This method is an improvement over HLLE, and any one who uses a central scheme or ENO
scheme based on either the Lax Friedrichs or HLLE flux can use the HLLC flux to improve
their results for MHD calculation.

We acknowledge that despite the computational efficiency advantage, the new MHD-HLLC
solver must inevitably be more diffusive on a seven-wave system than a linearized method
which takes into account all intermediate states. We recommend using the Roe’s solver if
exact resolution of the additional waves are considered important.
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Fig. 4.4-a. Contours of velocity per-
pendicular to the grid (v3) at t = 0.15.
Bx = 1, By = 2. MHD-HLLC Rie-
mann solver is used.
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Fig. 4.4-b. Contours of velocity per-
pendicular to the grid (v3) at t = 0.15.
Bx = 1, By = 2. Roe’s Riemann solver
is used.

0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.7

0.8

0.9

x

y

Fig. 4.4-c. Contours of velocity per-
pendicular to the grid (v3) at t = 0.15.
Bx = 1, By = 2. HLL Riemann solver
is used.
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[22] Gabor Tóth, The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes, J.
Comp. Phys., 161 (2000), 605-652.

[23] E. F. Toro, Riemann Solvers and Numerical Methods for Fluids Dynamics, Springer, Berlin,
Heidelberg, Second Edition, 1999.

[24] E. F. Toro, M. Spruce, and W. Speares, Restoration of the contact surface in the HLL-Riemann
solver. Shock Waves, 4(1994), 25-34.

[25] M. Wesenberg, Efficient MHD Riemann solvers for simulations on unstructured triangular grids,
J. Numer. Math., 10 (2002), 37-71.

[26] A. L. Zachary, A. Malagoli, and P. Colella, A higher-order Godunov method for
multidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput., 15 (1994), 263.

17


